
 GIT $ git init
$ git add .
$ git commit -m "Initial commit"

 GIT $ git status
$ git diff

 GIT $ git log

 GIT $ git commit -a -m "message"

 GIT $ git add <file1> <file2>
$ git add -p <file3>

 GIT $ git clone
ssh://git@example.com/path/to/git-repo.git

 GIT $ git add <file>
$ git rm <file>

 SUBVERSION $ svnadmin create /path/to/repo
$ svn import /path/to/local/project http://

example.com/svn/ trunk -m "Initial import"

 SUBVERSION $ svn status
$ svn diff | less

 SUBVERSION $ svn log | less

 SUBVERSION $ svn commit -m "message"

 SUBVERSION $ svn checkout
svn+ssh://svn@example.com/svn/trunk

 SUBVERSION $ svn add <file>
$ svn rm <file>

Creating a New Repository
With  git init , an empty repository is created in the current folder of
your local hard drive. The  git add  command then marks the current
contents of your project directory for the next (and in this case:
first) commit.

Committing Local Changes
Inspecting your current local changes is very similar in both systems.

Inspecting History
To inspect historic commits, both systems use the  log  command.
Keep in mind, however, that  git log  doesn’t need to ask the remote
server for data: your project’s history is already at hand, saved in
your local repository.

In case you’ve created new files or deleted old ones, you should
tell Git with the  git add  and  git rm  commands. You’ll be pleased to
hear that it’s safe to inform Git after deleting or moving a file or
even a folder. This means you should feel free to delete or move
even complete directory structures in your favorite editor, IDE,
or file browser and later confirm the action with the  add  and  rm|
commands.

In its simplest form, committing can feel just like in Subversion.
With the  -a  option, you tell Git to simply add all current local
changes to the commit.

Although short-circuiting Git’s staging area like this can make
sense, you’ll quickly begin to love it once you understand how
valuable it is:

You can add selected files to the staging area and even limit this to
certain parts (or even lines) of a file by specifying the  -p  option. This
allows you to craft your commits in a very granular way and only
add changes that belong to the same topic in a single commit.

Cloning a Remote Repository
Getting a copy of the project from a remote server seems almost
identical. However, after performing  git clone , you have a full-
blown local repository on your machine, not just a working copy.

the best Git client for Mac and Windows

GIT FOR SUBVERSION USERS
presented by TOWER — the best Git client for Mac and Windows

30-day free trial available at
www.git-tower.com

https://www.git-tower.com
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website

GIT FOR SUBVERSION USERS

30-day free trial available at
www.git-tower.com

 GIT $ git branch <new-branch>

 GIT $ git merge <other-branch>

 GIT $ git checkout <branch>

 GIT $ git tag -a <tag-name>

 GIT $ git branch

 GIT $ git add <file>

 GIT $ git pull

 GIT $ git push <remote> <branch>

 GIT $ git checkout --track <remote>/<branch>

 GIT $ git fetch

 SVN $ svn copy http://example.com/svn/trunk/
http://example.com/svn/branches/<new-branch>

 SUBVERSION $ svn merge -r REV1:REV2
http://example.com/svn/branches/<other-branch>

$ svn merge (or in newer SVN versions)
http://example.com/svn/branches/<other-branch>

 SUBVERSION $ svn switch
http://example.com/svn/branches/<branch>

 SVN $ svn copy http://example.com/svn/trunk/
http://example.com/svn/tags/<tag-name>

 SVN $ svn list http://example.com/svn/branches/

 SUBVERSION $ svn resolved <file>

 SUBVERSION $ svn update

 SUBVERSION $ svn switch
http://example.com/svn/branches/<branch>

Branching & Tagging
In contrast to Subversion, Git doesn’t use directories to manage
branches. Instead, it uses a more powerful and lightweight approach.
As you might have already noticed, the  git status  command also
informs you about which branch you are currently working on. And
in Git, you are always working on a branch!

Merging Changes
Like in newer versions of SVN, you only need to provide the branch
you want to integrate to the  git merge  command.

Sharing & Collaborating
To download & integrate new changes from a remote server, you
use the  git pull  command.

To switch to a different branch and make it active (then also
referred to as the HEAD branch), the  git checkout  command is
used. Because switching can take some time in Subversion, it’s
not unusual to instead have multiple working copies on your disk.
In Git, this would be extremely uncommon: since operations are
very fast, you only keep a single local repository on your disk.

Everything else is taken care of for you: you can merge two
branches as often as you like, don’t have to specify any revisions
and can expect the operation to be blazingly fast if you’re merging
two local branches.

If a merge conflict should occur, Git will already update the rest
of the working copy to the new state. After resolving a conflicted
file, you can mark it using the  git add  command.

If you only want to download & inspect remote changes (before
integrating them), you can use  git fetch . Later, you can integrate
the downloaded changes via  git merge .

In Subversion, data is automatically uploaded to the central server
when committing it. In Git, however, this is a separate step. This
means you can decide for yourself if and when you want to share
your work. Once you’re ready, the  git push  command will upload
the changes from your currently active branch to the remote
branch you specify.

Your teammates, too, will publish their work like this on a remote
(with the  git push  command). If you want to start working on such
a branch, you need to create your own local copy of it. You can
use the  git checkout  command with the  --track  option to do just
that: create a local version of the specified remote branch. You can
later share the additional commits you’ve made at any time with
the  git push  command, again.

Listing all available local branches just requires the  git branch| 
command without further arguments.

Creating tags is just as quick & cheap as creating branches.

the best Git client for Mac and Windows

https://www.git-tower.com
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website

